If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x+5x^2=2
We move all terms to the left:
9x+5x^2-(2)=0
a = 5; b = 9; c = -2;
Δ = b2-4ac
Δ = 92-4·5·(-2)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-11}{2*5}=\frac{-20}{10} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+11}{2*5}=\frac{2}{10} =1/5 $
| x*2+4+|x-2|=4x | | 9/5=n/5 | | 4(x+7)(x-10)(3x+6)=0 | | x^2-19+78=0 | | 7-3x+9=10 | | 2x4+3x3+-2x2+1=0 | | 6/(x-1)-4/x=1 | | 6c+14=50 | | x/(-12)=216 | | 5b+10=45 | | -X²+20x=93.75 | | X-50=y-20 | | 4x^2-6x=30 | | 9-10-10=x+2x | | -6=69(x-8) | | 4a+18=36 | | 5/7-2x/7=12 | | 5x=3=-17 | | 5x-20=3x+11 | | 7x+4=10x-32 | | x-3/5+7=2x+2/3 | | x+(x-3)+(x/2)=32 | | x+x-3+x/2=32 | | 11x-2=-90 | | 6561=2^n-1 | | 2p-4/(8p^2-6p+13)=0 | | |10x+10|-2=78 | | 5−b=11 | | x+7/14=1+3x/2 | | 5−a=11 | | x/14+7/14=1+3x/2 | | x^2-7x+73-(x-7)=0 |